Flexible simulation in simstudy with customized distribution functions

Really, the only problem with the simstudy package (😄) is that there is a hard limit to the possible probability distributions that are available (the current count is 15 - see here for a complete description). However, it turns out that there is more flexibility than first meets the eye, and we can easily accommodate a limitless number as long as you are willing to provide some extra code. [Read More]

Simulating data from a non-linear function by specifying a handful of points

Trying to simulate data with non-linear relationships can be frustrating, since there is not always an obvious mathematical expression that will give you the shape you are looking for. I’ve come up with a relatively simple solution for somewhat complex scenarios that only requires the specification of a few points that lie on or near the desired curve. (Clearly, if the relationships are straightforward, such as relationships that can easily be represented by quadratic or cubic polynomials, there is no need to go through all this trouble. [Read More]
R  simulation  GAM 

simstudy updated to version 0.5.0

A new version of simstudy is available on CRAN. There are two major enhancements and several new features. In the “major” category, I would include (1) changes to survival data generation that accommodate hazard ratios that can change over time, as well as competing risks, and (2) the addition of functions to allow users to sample from existing data sets with replacement to generate “synthetic” data will real life distribution properties. [Read More]

Simulating survival outcomes: setting the parameters for the desired distribution

The package simstudy has some functions that facilitate generating survival data using an underlying Weibull distribution. Originally, I added this to the package because I thought it would be interesting to try to do, and I figured it would be useful for me someday (and hopefully some others, as well). Well, now I am working on a project that involves evaluating at least two survival-type processes that are occurring simultaneously. [Read More]